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DEVELOPMENT OF A NEW WALL SHEAR
STRESS GAUGE FOR FLUID FLOWS

by

Yuksel Gur and Patrick Leehey

ABSTRACT

A new technique has been developed to measure the wall shear
stress and its direction in the turbulent boundary layer. This technique
involves the measurement of torque upon a very small cylindrical body
placed above the wall deep in the viscoug sublayer, so that the device is
operating in the creeping flow regime. The method of approach has
involved calibration tests on a gauge 8 mm. long by 0.8 mm. in diameter,
located in uniform shearing flow of glycerol created in a cone-and-plate
apparatus. Our theoretical, computational and experimental results show
that the torque has a linear relation with the wall shear stress. The gauge
response is reversed for reversing the flow. By directivity measurements
using this gauge, maximum wall shear stress direction and its magnitude
are obtained. Linear response is obtained up to Reynolds number 3.2
which was the highest we could get in our apparatus. We have used a
spectral element code, Nekton, for determining the creeping flow about
the gauge. There is a very good agreement between the experimental and
computational results.
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NOMENCLATURE OF SYMBOLS

d Cylinder diameter

F Drag

h Distance between wall and cylinder

H Distance between stationary and moving walls

L Length scale

L' Distance between stationary mirror and screen
N Number of interpolation points around cylinder

p Pressure

r Radial distance

Re Reynolds number, U d2

V

T Temperature

u x component of velocity

1? Velocity vector

U. Free stream,, velocity

U Constant shear rate

Ud Disturbance velocity

ud ,,m. Maximum disturbance velocity

u. Friction velocity, If i

U+ -

U*

v y component of velocity

y Distance from wall
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Distance from wall in viscous units,

V

a Angle between flow direction and normal direction of
gauge

j3 Cone angle

OT Rotation angle of the gauge

p. Absolute viscosity of fluid

v Kinematic viscosity of fluid

5L Laser displacement

p Fluid density

(0 Angular velocity of cone

h
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d
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d

a Vanance

"t, Wall shear stress

It Stress vector

Tij Stress tensor

'rr Normal viscous stress in radial direction
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Tr e Viscous shear stress

W Stream function

4,7 rl Bipolar coordinates

rld Ratio of the computational drag to analytica drag

rT1 Ratio of the computational torque to analytical torque
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1. INTRODUCTION:

The measurement of meaa and fluctuating shear stresses created on the wall under a tur-

bulent boundary layer flow is very important in analyzing a flow field.

A variety of techniques such as the Stanton tube, the Preston tube, the surface fence, the

floating element and the thermal methods have been used for the measurement of wall shear

stress in a turbulent boundary layer. Stanton(1920) used a rectangular pitot tube, mounted on a

wall in a fully developed laminar flow, and used the difference between the pressure measured

with this pitot tube and the static pressure to determine the velocity at the center of the tube , and

established that if the center of the Stanton tube was located close enough to the wall, the wall

shear stress could be calculated as ,= u (y) . This is an indirect measurement technique.

Y

Preston, J.H.(1953) used a round pitot tube on a surface in the fully develope . turbulent pipe flow

and established a calibration curve for a round pitot tube. The surface fence that consists of a

wall obstruction was invented by Konstantinov and Dragnysh(1955). The difference in pressure

before and behind this gauge is related to the wall shear stress. The advantages of this gauge over

the Stanton tube is that it gives a doubled pressure reading. Head and Rechenberg,(1962) cali-

brated a surface fence and a Preston tube in a turbulent flow and compared these two gauges.

Although there was an agreement in moderately unfavorable pressure gradients, the two gauges

indicated different values of the wall shear stress in strongly unfavorable pressure gradients.

Vagt, J.D. and Femholtz, H.(1973) calibrated the surface fence versus the Preston tube and gave a

calibration curve of the surface fence for the flow direction. The floating element technique

based on the measurement of skin friction forces, acting on a floating element buried in the wall

inside a turbulent boundary layer. Frei, D. and Thomann, H.(1980) used the floating element

technique to investigate the error of Preston tube: in adverse pressure gradients. The gaps

between the floating element and the surrounding wall filled with a liquid in order to prevent dis-

turbing forces on the element. Petri, S.(1984) developed a 4 mm. by 4 mm. floating element to

measure the wall shear stress. Although that gauge was satisfactory in operation, it did not pro-

vide the desired frequency response. The main difficulty with this technique is the gap effects.

.. . . . . . . ... . .... . .. . . . . . . . ._ . .. .. .
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The gap creates a disturbance field which affects the performance of the gauge. Another method

of measuring the wall shear stress is the use of flush mounted hot film probes. The operation prin-

ciple of thesc probes is that the fluid at the surface of the probe, which is mounted on a wall

inside a turbulent boundary layer, is controlled at a specific temperature, which is different from

that in the bulk fluid and the heat transfer rate between the fluid and the probe is measured. Using

a calibration curve given between the measured heat transfer rate and the velocity , the wall shear

stress can be determined. This technique measures the mean wall shear stress as well as fluctuat-

ing wall shear stress in a turbulent boundary layer.

Most of these techniques have limited applicability, and lack analytical and computational

fluid studies for the gauges. We have developed a new technique for the measurement of the wall

shear stress in a turbulent boundary layer. The measurement principle of this technique is to place

a cylindrical body inside the viscous sublayer and measure the torque acting on the body. The

gauge operates in the creeping flow regime by its inside the viscous sublayer. The torque acting

on the gauge due to the linear shear flow of the viscous sublayer has a linear response to the wall

shear stress. This is a direct measurement technique. Since the gauge has a linear response to the

wall shear stress, both mean and fluctuating components of the wall shear stress can be measured.

Another important feature of the gauge is that the gauge gives the maximum wall shear stress

direction and its magnitude. This gauge could also be used to determine the flow direction.
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2. ANALYTICAL PART

2.1. Wall shear stress device for viscous sublayer:

Our measurement technique for the wall shear stress is put a cylindrical body very close to a

wall inside the viscous sublayer and measure the torque acting on the body due to the shearing

flow of the viscous sublayer.

The experimental results show that the viscous sublayer extends from the wall to y' = 5. In

this region the mean velocity profile is linear ( u+=y + ). Although the mean velocity profile

within 1,he sublayer is a linear velocity profile, the flow within it is not laminar, but accompanied

by considerable irregular fluctuations. The Reynolds number based on the characteristic length

y+ and the velocity at y4 , has the following relation to y:

Re = (y + )2 .

Were the gauge to extend to the edge of the viscous sublayer, the Reynolds number would

become 25. Stokes flow can not exist for this Reynolds number, therefore, the gauge

configuration should be such that the gauge stays below y+ = 1 .

2.2. Behavior of Stokes Flows :

The Navier-Stokes equations for incompressible flow are

at

where V.t=0.

Consider a flow field with characteristic length , L , and velocity, U... With the proper nondi-

Xi Ui
mensional distance xi* = - , velocities ui* = and pressure p * =-,--- the Navier-Stokes

U.-
W L
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equations become

Re -Ol=-Vp+V

uL
where Re = . For Re - 0, these equations become the Stokes equations:

V'p* = V' 2e .

All properties of a Stokes flow are governed by linear equations for p, ui, the vorticity mi and

the stress tensor j . The linear property may be used in adding flow fields to produce new flows.

For two-dimensional flow with a symmetry plane or axisymmetric flow, the streamlines are sym-

metric and all the other properties , ui, p , oi , j, are antisymmetric with respect to the sym-

metry plane.

2.3. Description of the problem:

Our measurement principle for the wall shear stress is to put a cylindrical body very close to

a wall inside the viscous sublayer where the flow can be assumed to be a shearing flow and to

measure the torque acting on the body. Therefore, our analytical and numerical studies are aimed

at solving the creeping flow equations when there is a linear shear flow and a cylindrical gauge

which is very close to a wall.

We expect the following functional relations for the torque T and the drag F per span act-

ing on the cylindrical body with axis parallel to a plane wall due to a two-dimensional shearing

flow directed parallel to the wall and normal to the cylinder axis:

F =f (OL,Udd,h),

F =g (t,Ud, d,h),
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where U d ,g. ,h are the constant shear rate, the diameter of the cylinder, the absolute viscosity

and the distance between the wall and cylinder, respectively. Since we consider a Stokes flow,

density does not appear as a variable in the above functional relations. Using the Buckingham t-

theorem, these functional relations become

T -/2 ( h

VtUd 2

As can be seen, the torque and drag are linearly related to the wall shear stress x, = .U . For a

three-dimensional fow field , there is one more variable, the length scale of the cylinder L. For

this case, the functional relations become

T h= =f3(h L

ILUd 2  d d

F h L

2.4. 2-D Solution of the Stokes equation for the cylindrical gauge:

Us

79

F-v .

Figure (1). C'ylincdcal gauge
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The solution of the Stokes equation, when there is a linear shear flow and a cylindrical

gauge which is very close to a wall, was obtained by Davis and O'Neil1(1977) by using a stream

- function formulation. Inflow velocity components were taken as (Uy, 0, 0). The equation of

continuity is

V.i = 0.

Using the stream function, W, velocities are given by

a-' ax'

The boundary conditions are

onthe plane, V= ay =0,ay

on the cylinder, N,=M , =n
an

h
The constant M depends on the gap ratio, h , and can be determined from the flux of fluid

through the gap. The boundary condition at infinity is W-I Y2 (y-***). The equations of
2

motion for Stokes flow are

Vp = tV2j.

Using the stream function, the equations of motion become a biharmonic equation for ,:
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V4 I = 0.

Ud 2
The Reynolds number for the flow is -i--. The Stokes solution is the lowest order asymptote as

this Reynolds number approaches zero. Davis and O'Neill obtained the solution of this bihar-

monic equation in terms of bipolar coordinates. Their results show that the torque and drag force

due to a linear shear flow are linearly related to the wall shear stress. Their solutions give the

dimensional torque and drag on the body per unit length as

P x d2T =- I ,2

2 4

F-2x ,d(l -2 - 4 +...)
3 45

hwhere e = -. The drag equation agrees in terms of functional dependency with the result, found
d

in section (2.3) using a dimensional analysis. An interesting result is that the torque acting on the

body is independent of the gap. The pressure and shear stress are antisymmetric with respect to

symmetry axis. As can be seen from the following figure, y components of the pressure and shear

stress terms at 0 and - 0 cancel each other, therefore, the integration of the shear stress and pres-

sure on the cylinder gives zero lift force.

17-7-7-7 - . 7 , 7
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According to analytical results of Davis and O'Neill when the gap is approximately 0.685 times

the cylinder radius or less, the flow first separates symmetrically from the wall. As the gap is

further decreased to zero, symmetrical separations occur alternately on the body and the wall. The

flow path between the body and the wall becomes increasingly tortuous. Flow visualization of an

early stage of this process was done by Taneda(1979), see Figure 11 . In his experiment, the gap

was 0.57 times the cylinder radius and Reynolds number was 0.011.

2.5. Maximum Disturbance Velocity:

We measure the wall shear stress using a cylindrical gauge. It is necessary to know the dis-

turbance velocity due to the cylindrical gauge to determine the proper size of the cylinder gauge

for the wall shear stress measurements in the turbulent boundary layer. Another reason for inves-

tigating the disturbance velocity is that we use a cone-and-plate apparatus for testing the gauge; it

consists of a stationary wall as well as a moving upper wall within which the gauge creates a

blockage effect. The blockage effect due to the upper wall is important since the presence of the

moving upper wall increases the velocity gradient on the cylinder, therefore, increasing the torque

acting on the body. Decreasing the distance between the walls increases the torque. The distur-

bance velocity Ud is defined as the difference between the inflow velocity at y location ( U y )

and the velocity in the presence of the cylindrical body at the same location. When there is no

body in the domain, the streamlines are straight lines. The streamlines take symmetrical curved

shapes in the presence of the cylindrical body and the maximum disturbance velocity ud ,.

occurs along the symmetry axis because of the presence of only x component of the velocity.

Finite span decreases this velocity, hence the two dimensional calculation yields a conservative

estimate of blockage. The maximum disturbance velocity is obtained using Davis and O'Neill's

stream function formulation. The maximum disturbance velocity is derived in Appendix (A) and

it is plotted in Figure 2 . It can be seen from Figure 2 that the maximum disturbance velocity

decays almost exponentially in the y direction, and it is negligibly small when the distance from

the wall is about 12 times the diameter plus the gap. The original cone-and-plate experiments
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H
were done for four different values of H = 2.355,3.548.4.754,7.167. As can be seen in thed+h

maximum disturbance velocity plot, the ratio of U changes from 0.06 to 0.003 in our
U

experiments. In the above c;pcriments, there is almost no secondary flow effect since Reynolds

number is very small, but there is a blockage effect due to small gap heights H . In order to

prevent the blockage effect, the cone-and-plate experiments were done with an additional 120

cone for values of H = 9.68 , 11.54 . In the 120 cone experiments, there is a significant
d +-h

secondary flow effect because of having high Reynolds numbers. The Reynolds number.2 .. 2

= v ranges from 0.19 to 0.43. Increasing Reynolds number increases the centrifugal12v

force in the cone-and-plate apparatus ; therefore, the streamlines at the stationary ;l-e sufac- a.re

oriented more towards the center of the plate. The secondary flow effects in the experiments is

calculated according to H.P. Sdougos et a. (1984) and used to convert the experimental results to

actual calibration curves. The secondary flow effects will be discussed in details in section (3.1).

As can be seen in section (3.3), there is no blockage effects in the 120 cone-and-plate experiments

when the secondary flow correction is used. Therefore, we can conclude that the calibration curve

obtained with the 120 cone-and-plate experiments can be used as the calibration curve of the

gauge for boundary layer measurements.

Our experimental and theoretical flow calculations show that for the calibration of the
H

gauge. the cone angle should be such that the value of H is bigger than 12 in order to
d +h

prevent blockage effects. If secondary flow effect is significant, the secondary flow correction

explained in section (3.3) should be made in order to get an actual calibration curve for boundary

layer measurements.
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Ud max.

U

0.08

0.07 Ud max. Maximum disturbance velocity

u Inflow velocity (Uy)

0.06

0.05

0.4

0.03

0.02

0.01

01
2 4 6 8 10 12 14 16 18 20

V

d + h

Figure (2). Maximum disturbance velocity
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3. EXPERIMENTAL SET-UP AND RESULTS:

3.1. Cone-and-plate apparatus and flow behavior in the apparatus:

The cone-and-plate apparatus used for the calibration of the cylindrical gauge is shown in

Figure 9. This apparatus was developed by Prof. C.F. Dewey, Jr. of M.I.T. The reason for using

this apparatus is that it creates a linear shear flow and gives a constant shear rate everywhere

inside the apparatus. The cone-and- plate apparatus consists of a shallow rotating cone and a sta-

tionary circular plate. The diameter of the apparatus used in the experiment is 206 mm.. Three

different cones ( 3 , 60 and 120 ) are used in the experiment to determine the blockage effect.

This apparatus is filled with glycerol or glycerol-water mixtures and driven by an electrical

motor.

For small Reynolds numbers ( Re << I ), flow streamlines inside the apparatus are concen-

tric circles and cone surface velocity, u(r), increases linearly with radius. The wall shear stress is

i)u
-tW -t- ,'

o) r 0)~~tan[3

For small cone angle, [, the wall shear stress is

0)

where [3 is the cone angle, li is the absolute viscosity , (o is the angular velocity of the cone , and

H is the gap heigth. The wall shear stress is constant everywhere inside the cone for small Rey-

nolds numbers.

The flow behavior inside the cone-and-plate apparatus were investigated by H.P Sdougos,

S.R. Bussolari, and C.F.Dewey,Jr.(1984). They investigated the flow behavior inside the cone-
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and-plate apparatus using flow visualization, hot film heat-transfer probes and measurements of

the torque required to rotate the cone against the retardation of the viscous fluid. They also

presented theoretical results to these experiments. According to their findings , flow regimes are

well characterized by the single dimensionless parameter:

r2 (0 p2
12v

where r is the radial distance from the axis of the cone. The parameter R is analogous to Rey-

nolds number. They found a good agreement between the theoretical results of the wall shear

strcss values for R > 0.5 and observed turbulence due to secondary flow for R> 4 . They did

not attempt to describe the flow near the outer rim of the cone, where edge effects and the boun-

dary conditions are important. The dimensionless parameter k is less than 0.02 in our 30 and 60

cone-and-plate experiment..

Fewell, M.E. and Hellums, J.D.(1977) investigated the secondary flow in cone-and-plate

viscumeters by numerical integration of the equations of motion for steady incompressible flow

of Newtonian fluids. They assumed a spherical segment for the outer rim of the cone, and deter-

mined the effects of the Reynolds number and cone angle on secondary flow. They defined their

R o2 CO
Reynolds number as , where Ro is the outer radius of the cone. According to their

results, there is no secondary flow effect in our experiments with 30 and 60 cone angles since the

R0
2 (o

maximum Reynolds number - is 39.5 in these experiments. Fewell's analysis can not say
V

anything about the 120 cone experiments since the cone angle is not small enough for their

analysis to be valid. We do not expect edge flow effects in our probe locations since the probe

locations are not close to the edge of the cone. The probe locations are 0.49 Ro and 0.73 Ro.

In order not to have the blockage effect which we have in the 30 and 60 cone-and-plate

experiments, the cone-and-plate experiments have been done with an additional 120 cone. In the

120 cone-and-plate experiments, the secondary flow effect becomes very important since the
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Reynolds number I is proportional to 132. In the presence of secondary flow, the fluid streamlines

are no longer concentric circles and fluid velocity vector forms an angle 0, with the azimuthal

direction. This angle was calculated by H.P.Sdougos et al. (1984) by using an expansion of the

Navier-Stokes equations for small values of the single parameter R r !0) 2 They found the12v

angle 0, at the plate surface as

4 s=tanIu [ 0.81i + O (Rj3).v

This expression is used for the 120 cone results with the experimental directivity curve, shown in

Figure 20 , to obtain an actual calibration curve for boundary layer measurements. In the 120
H

cone experiments, the Reynolds numberRk and 0, are 0.19, -8.60 for - = 13.4 and 0.43, -190
d

H
for - = 16, respectively.

3.2. Construction of the gauge and measurement principle:

The cylindrical gauge is shown in Figure 4. The diameter of the gauge is 0.8 mm. and the

length of the gauge is 8 mm.. The construction technique of this gauge was developed by Peter

M. Wagner, research engineer from the Technische Universtat, Berlin. The gauge is made of pla-

tinum. One of its ends is polished flat with special polishing materials up to the centerline for an

axial distance of 1.2 mm. in order to have a mirror surface for reflection of laser light used for

sensing rotation. A plexiglass plate 50.8 mm. in diameter and 3.17 mm. in thickness is used for

the mounting surface of the gauge. Four copper wires with a diameter of 0.4 mm. and a height of

0.6 mm. are mounted on the plexiglass as supports. Two platinum wires having a diameter of 25

micrometers are soldered to the supports after pretensioning. The gauge is also soldered at the

center to the pretensioned platinum wires at both ends. The stationary plate of the apparatus has a

diameter of 206 mm. and has a circular hole with a diameter of 50.8 mm. at a position 63 mm.
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from the axis of the cone. The gauge on the plexiglass plate is put in the circular hole of the sta-

tionary plate of the apparatus. Glycerol and glycerol-water mixtures are used as working fluids in

the apparatus in order to keep the Reynolds number small.

The measurement principle is basically shown in Figure 3 . A stationary helium-neon laser

sends a laser beam to a stationary mirror outside the apparatus. The reflected laser beam goes to

the mirror surface of the gauge from the stationary mirror, and is reflected back to the stationary

mirror. It then goes to a screen which is at a distance of I meter from the stationary mirror. When

the cone does not rotate, there is a reference spot on the screen. When it rotates, it creates a linear

shear flow. Due to that shearing flow the gauge rotates and the mirror surface of the gauge reflects

the laser beam back at an angle. The reflected laser beam gives a displaced spot on the screen.

We measure the displacement of the laser spot on the screen and measure the rotational speed co

of the cone at the same time using a digital counter. By measuring the rotational speed , we know
(0

the wall shear stress since t,, = -- The relation between the rotation angle of the gauge and

the laser displacement on the screen is

SL = 2 OT L,

where 6L is the laser displacement, OT is the rotation angle of the gauge, and L, is the distalice

between the stationary mirror and the screen. Basically, by measuring the rotational speed of the

cone and the laser displacement, we get a calibration curve for wall shear stress versus the rota-

tion angle of the gauge.
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w
Sguge

Iplexiglass
mirror

laser -

screen

Figure (3). The cone-and-plate apparatus

Figure (4). Geometry of the shear stress gauge
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3.3. Experimental Results:

As explained in section (3.1), the wall shear stress has a constant value over the plate sur-

face of the cone-and-plate apparatus for small Reynolds numbers. In order to observe the block-

age effect of the gauge, the same gauge is used in two different positions from the rotational axis

of the cone for three different cones ( 30, 60, and 120 ). A linear response is obtained in each

case.

The absolute viscosity of glycerol used in the experiment is 815 centipoise at the measure-

Hment temperature, 240 C. The experimental result for the 30 cone and - = 3.26 is shown in

Figure 12. The average slope, the ratio of the laser displacement on the screen to the rotational

speed of the cone, is 15.83 [mm.secs] and the ratio of the variance to the average slope is 7 %.

The average slope in the measurement can be written as

Average slope = laser displacement _ 6L
rotational speed (o

By putting the values 8L and co into above relation, we get the following relations

Average slope = 2gL3  Or

or

OT P Average slope

Using the above relation, we find the ratio of the wall shear stress to the rotation angle of the

gauge, C , as 34.30 [ N/m 2deg. I.
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H
The experimental result for the 30 cone and -- = 4.91 is shown in Figure 13. The average

slope, the ratio of the variance to the average slope, and the value of - are 13.09 [mm. secs],

3 % , and 41.49 [ N/m 2deg. I respectively.
H

The experimental result for the 120 cone and H = 13.4 is shown in Figure 14. The aver-

age slope is 1.81 [ mm.secs ] and the ratio of the variance to the slope is 4 % . The value of OT

is 74.95 [ N/m 2deg. ].

The experimental result for the same cone angle, 120, and the same viscosity , but the dif-

H
ferent gap, - = 16 , is shown in Figure 15 . The average slope in this experiment is 1.63

mm.secs ], and the ratio of the variance to the slope is 8 % , and the value of TW- is 83.50

[N/M 2deg.].

Since the Reynolds number k is high in the 120 cone-and-plate experiments, secondary

flow effects become very important. In the presence of secondary flow, the flow direction is no

longer perpendicular to the symmetry axis of the gauge, and it forms an angle 0, with the sym-

metry axis of the gauge. This angle is calculated as explained in section (3.1). We can assume

that the torque acting on the gauge in the 120 cone experiments is only influenced by the wall

shear stress on the plate since the position of the cone surface is far a way from the gauge (

Hd > 13 ). By using this assumption, calculated values of 4s , and the experimental directivityd

curve, we can obtain an actual ( ) for subsequent boundary layer measurements. Basically,

OT
-- obtained in the cone-and-plate experiments is multiplied by the experimental direction sensi-oT

tivity, shown in Figure 20, corresponding to 0, in order to obtain an actual value of - --. As can

be seen from Table 2, the values of -W obtained for the 120 cone at two different positions differ
OT
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by less than 2 % . The actual calibration result without blockage of the gauge is

,w- = 69.30 [NIM2.deg. ].

The rotational stiffness of the gauge could not be measured, therefore, a constant rotational

stiffness is assumed. This is a good assumption since the maximum rotation of the gauge in our

experiments is around 2 [ degree J, and the response of the gauge is linear. Since we do not have

the stiffness of the gauge, we can not compare the experimental torque results with the theoretical

torque results.

.rw

As can be seen in Figure 16, the experimental values of - decrease with decreasing gap

height H hence the rotation angle OT of the gauge increases for constant shear stress t.

Decreasing the gap heigth increases the velocity gradient acting on the gauge thereby increasing

the torque which is linearly related to the rotation angle of the gauge through the rotational stiff-

ness of the gauge ( T = kT OT, where k, is the rotational stiffness of the gauge, and OT is the rota-

tion angle of the gauge ).

In each experiment, the measurements are taken both for positive and negative rotational

speeds of the cone. As can be seen in Figures 12 through 15 , the gauge response is reversed upon

reversing the flow direction. Therefore, the gauge gives the magnitude and direction of the wall

shear stress. That is a very important feature of the gauge since most of the other techniques do

not give the direction of the shear stress.

In order to see the direction sensitivity of the gauge, the angle between the flow direction

and the normal to the symmetry axis of the gauge, oa, is changed from 00 to 600 with 100 incre-
H

ments using the 30 cone for -- = 4.08 . The directivity measurements, shown in Figure 20, are

obtained. If the flow field were two-dimensional , we would expect that only the velocity com-

ponent normal to the gauge axis would generate a torque. In this case, the ratio of the wall shear

stress at ot = 00 to the shear stress at c becomes cos (a) . The flow field can not be two-

dimensional for our aspect ratio, el = 10. Increasing the angle, a, increases the three dimension
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effect in the flow field and gives more than a cosine effecL Up to a = 400, the variance in the

measured directivity resulting from repeated steady flow experiments remains small. A peak

appears at t = 500 with a very large variance. In some sense it is an "unstable point" since small

changes from that angle give a very large difference in the response. It is likely that the gauge is

deflected spanwise by cross-flow torque at large a .This would produce a complicated deforma-

tion of the gauge structure and a corresponding peculiarity in the behavior of the laser light sens-

ing system. This behavior deserves more study. However, as it stands, the gauge should be capa-

ble of distinguishing moderate changes in flow direction as well as being able to determine a

complete flow reversal.

In order to see up to what Reynolds number the flow field might be assumed a Stokes flow,

glycerol-water mixtures with absolute viscosities ranging from 815 centipoise ( 100 % glycerol )

to 32 centipoise ( 60 % glycerol , 40 % water in volume ) are used. The maximum Reynolds

number, which we could obtain in our cone-and-plate apparatus, based on the diameter of the

gauge and shearing velocity at the gauge mid-section is 3.2 . Up to that Reynolds number, a

linear response is obtained. These results are shown in Figures 21 through 23 . This indicates

that the Stokes flow is a good engineering approximation up to a Reynolds number of at least

3.2 . This allows us to use that Reynolds number to determine the actual size of the gauge for

wind tunnel and turbulent oil channel measurements.
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4. COMPUTATIONAL PART:

4.1. Introduction to the spectral element code, NEKTON:

We use the spectral element code, NEKTON , developed by Prof. A.T. Patera at M.I.T. , for

computing the Stokes solution for the cylindrical gauge. NEKTON is a computer code for the

simulation of steady and unsteady incompressible fluid flow with forced and natural convection

heat transfer. The code has three parts: Prenek, Nekton and Postnek. Prenek is an nteractive pro-

gram in which all the necessary information for the flow problem such as geometrical, physical,

and numerical parameter can be given. The Nekton part of the code performs the numerical

integration of the Navier-Stokes and energy equations for the flow problem which is specified in

Prenek. Postnek is an interactive graphic package , in which the results of a Nekton simulation

can be analyzed.

The spectral element technique is a high order finite element technique. In the spectral ele-

ment, the computational domain is broken up into macro elements as in the finite element tech-

nique and the velocity and pressure terms in each element are represented by high order Lagran-

gian interpolants. In each element, the velocity and pressure terms are expanded in terms of (N-I)

th order polynomial Lagrangian interpolants through Chebyshev collocation points. Inserting the

assumed forms of the dependent variables ( it, p , T ) in the governing equations, and using

weighted residual techniques, discrete equations are generated. The solution for the dependent

variables, velocities, pressure, and temperature , are obtained at the collocation points of the

mesh. Convergence to the exact solution can be obtained either by increasing the number of ele-

ments or by increasing the order of the interpolants.

We used the Stokes version of Nekton to compute the cylindrical gauge problem. The

discretizations of steady and unsteady Stokes flows and their solution procedure are given by

Ronquist, E.M. and Patera, A.T. (1988). In order to find the blockage effect of the gauge and

compare the analytical solution of the torque and drag acting on the cylinder with computational
h H

results, the code is run for constant e - and different values of H . The velocities and
d d+h
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pressure computed at collocation points are used in the approach, as explained in the appendix

(B), to calculate the stress distribution around the cylinder. The torque and drag are then com-

puted by integrating the shear stress and pressure terms over the cylinder.

4.2. Nondimensionalization of the problem:

We used the Stokes version of NEKTON to solve the steady Stokes equation for the

cylindrical gauge.

The Stokes equation is

0=-Vp +g. V2 1I

I , Xi  • U
By using the nondimensional distance xi = - , velocities ui = - ,and pressurep -pd Ud 4U

the nondimensional form of the Stokes equation becomes

0=-V*p*+V*2
*

With this nondimensionalization, the nondimensional stress is

AtU

The torque and drag equations in terms of nondimensional quantities becomes

T tU [dI [I 0,d/2 ] dO

F U (,0,,_d/ 2 ) cosO +p* sinO I dO
0
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Figure (6). Computational domain

Figure 6 shows the boundary conditions for the problem. The inflow and outflow are taken as

u = Uy v = 0. Wall boundary conditions ( u = v = 0 ) are specified on the cylinder and on the

lower wall. On the upper wall the boundary conditions are u = UH, v = 0.

4.3. Computational results:

The computational domain, close to the cylinder, is broken up into circular elements in

order to get the collocation data in the radial direction. By using this approach, we could easily

convert the data, given in Cartesian coordinates by the code, to cylindrical coordinates, and com-

pute the shei: stress on the cylinder by using the approach given in Appendix (B). The other

parts of the domain are broken up into rectangular elements. The size of the elements are

decreased approaching the cylinder in order to increase the accuracy of the results. In the
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computational calculation, the ratio e of the gap ( the distance between the cylinder and the lower

wall ) to the cylinder diameter is taken as a constant, E = 0.384. The value of e is chosen higher

than the critical value, given by Davis and O'Neill for symmetrical flow separation. The code is
H

run for constant e = 0.384 and seven different values of = 2.355, 3.58 ,4.754, 4.98 7.167,
d+h

8.94, 12.77 . Two different ordcrs of Lagrangian interpolants ( 5 th and 7 th order ) are used. In

each case, the shear stress on the cylinder, the torque and the drag are computed using the

approach given in Appendix (B).

HThe velocity field for - = 3.8 is given in Figure 25 . In this figure, the vectors show the
d + h

direction and magnitude of the velocities at the collocation points.

H
The spectral element mesh for E = 0.384 and H = 2.355 is shown in Figure 26. The

shear stress distribution and pressure distribution on the cylinder are shown in Figure 28 and 29,

respectively. From these figures, the antisymmetric behavior of the shear stress and pressure can

be seen. The maximum shear stress which appears at 0 = 00 is 9.68 times the wall shear stress t,

and the minimum shear stress is -2.70 ,, at 0 = 1800. The maximum pressure on the cylinder

is 7.886 x,,.

H
The gpectral element mesh for H= 8.94 and 7 th order Lagrangian interpolants is

d + h

shown in Figure 37. Figures 38 and 39 show the shear stress and pressure distributions on the

cylinder. The maximum shear stress is 4.99 ,, and the minimum shear stress is - 0.78 r, . The

maximum pressure is 3.42 c,, at 0 = 570.

As can be seen from Table 1 , the maximum wall shear appears at 0 = 00. It decreases when

the distance H between the lower and upper walls increases. The reason for this is that increas-

ing H decreases the velocity gradient on the cylinder in order to maintain the constant flow rate.

The shear stress starts decreasing from 0 = 00 and becomes zero at 0 = 900 . After 0 = 900 . the

shear stress changes its direction, and starts increasing , and approaches an another extreme value

at 0 = 1800. The reason for this increase is that the geometry between the lower wall and cylinder
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from 0 = 900 through 1800 acts as a convergent channel, therefore, the velocity gradient has to

increase while 0 is increasing in order to maintain the constant flow rate. Parabolic velocity

profiles are obtained in the region between the lower wall and cylinder. Another interesting point

which should be mentioned is that the maximum pressure on the cylinder appears at 0 = 570.

The torque parameter ill the ratio of the computational torque to analytical torque, is 1.941
H H

for H = 2.355 and it is 1.044 for H = 12.77 . The computational torque and drag
d +h d+ h

results for each case are given in Table I and plotted in Figure 7 . As can be seen from Figure 7,

the computational torque and drag results approach exponentially to the analytical results as the

distance H between the upper and lower walls is increased. This result validates the computa-

tional results since the analytical results are obtained ior H -- c*.
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5. CONCLUSIONS:

1. A new technique has been developed for the measurement of the wall shear stress in a tur-

bulent boundary layer. The measurement principle is to place a cylindrical body deep inside the

viscous sublayer and measure the torque acting on the body due to the shearing flow of the

viscous sublayer.

2. The torque and drag force are linearly related to the wall shear stress.

3. The gauge diameter should be such that the gauge stays below y' = 1.

4. A gauge, 8 mm. long by 0.8 mm. in diameter, is calibrated and a linear response is observed.

5. By directivity measurements using this gauge, the maximum wall shear stress direction and

its magnitude are obtained. That is a very important feature of the gauge since most of the other

techniques do not give the direction of the shear stress.

6. A linear response is obtained up to the highest Reynolds number, 3.2, which we could get in

our cone-and-plate apparatus. This result allows us to use that Reynolds number in order to

determine the size of the gauge for wind tunnel and turbulent oil channel experiments.

7. The computational torque and drag results asymptote to the analytical results as the height H

of the computational domain is increased. This corresponds to the experimental results.

8. For calibration of the gauge, the cone angle of the apparatus should be such that the value of

H is bigger than 12 in order to prevent blockage. If the secondary flow effect is significant,

the secondary flow correction, explained in section (3.3) should be made in order to obtain the

actual calibration curve for subsequent boundary layer measurements.

9. A three-dimensional solution of the creeping flow equations for the gauge is needed.
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APPENDIX (A):

DERIVATION OF MAXIMUM DISTURBANCE VELOCITY:

The solution of the biharmonic equation for a cylinder close to a wall was given given by

Davis and O'Neill (1977) in terms of bipolar coordinates. Bipolar coordinates can be obtained by

considering the complex function for obtaining the potential for two opposite line sources a dis-

tance 2c apart:

W=l[I (c-z =tanh-'(c (A.1)

Using W =11 +i and z =x +iy =c tanh [] , the Cartesian coordinates in terms of bipolar

coordinates are obtained as

c sinl c sinh(
X cosht - cosl' cosl4 - costq (A.2)

d
with c = -sinhca. The plane is given by =O and the cylinder is given by =ac. The solution of

2

the biharmonic equation which satisfies the wall boundary conditions on the plane and on the

cylinder and free stream flow boundary condition at infinity were given by

12

w-heMr (A.3)

where X and
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41(cosh - cosq )-I [v)+ 1 (k) cosri] (A.5)

with

Xo( ) = A 0sinh + B 0 (4cosh4 - sinh4) (A.6a)

XI(t) =A 1(cosh2t - 1) + B 1(sinh2t - 2t) (A.6b)

LX. =A.I cosh (n +1)4 - cosh (n -1 )4 ] + B,[ (n -1)sinh (n +1) (A.6c)

Ot)= a Asinhg + b o( ccsh4 - sintit) (A.6d)

0 = a 1(cosh2 -I) + b,(sinh2t -24) (A.6e)

Thc coefficients in the above equations are
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ao-Sinh2 C b o= c +sinhaxcosha (A.7a)

a0  asia ' a2srh 2a

0.5 tanha 0.5 (.b

atanhax at- tanhot

A=a - cosha sinhat B= silhCI (A.7c)
a2 _-Sinh 2 X (X2 Sih 2at

a e 2 a - e -- sinhot + sinh 2 a - 0.5 tanhat (A.7d)
A si ih2a ( a- afl B1  a -taniia

A n n- cotha ) sinh2a + e-'a sinhn a B-n Sinh 2(
n ihn~ 2SfhC B. h~~c (n -.2) .(A.7e)

The x component of the velocity is

where

+ __ b (A.9a)
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+ A all (A.9b)

Par, ial derivatives of Cartesian coordinates with respect to bipolar coordinates are

ax = c sinrj sinh 2
- - ( cosht - cosil) 2  (A.10a)

ax = c (cosT cosht-1) (A. Ob)

0-1 ( cosh 4 - coq )2

y _ c (-cosh cos1 + (A.Oc)
at (cosht - cosq )2

- c (-sin 71 sinh4) (A.IOd)

d coshil - cosi) 2

As can be seen from the above relations,

y ax ax (A. 11)

(All

The Jacobian is

a(X, y) ax A A -ax _ ) .
-=(,I _~ +( )~ ai r (A. 12)
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By putting the derivatives in to the Jacobian and after some reduction,

J - (A. 13)
(cosht - cosn )2

Partial derivatives of bipolar coordinates with respect to Cartesian coordinates are

=J -i ___ J- Y (A. 14a)
ax al ' ax ( a

a -1 n a ax y (A.l4b)

By putting equation (A. 13) into equation (A. 14),

=on = cosht cosrn - I (A.15a)

ax ay c

= k = I (-sin il sinht (A.l15b)

x ~ay C

The disturbance velocity ud is the difference between the inflow velocity at y location

(Uy ) and the velocity in the presence of the cylindrical body. The maximum disturbance velo-

city occurs along the symmetry axis because of the presence of only x component of the velocity.

In other words, the maximum displacement of each streamline due to the body occurs on the

symmetry axis.
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Bipolar coordinate i1 is zero on the y axis.

A -- 0 =0 at l= 0 (A. 16)

Using equation (A.16) in the velocity equation (A.8), we obtain the velocity on the symmetry

axis as

So= U (y - -1 +M ) at T =0. (A.17)
a ay O l

The maximum disturbance velocity is

Ud =Uo-Uy . (A.18)

In terms of the stream function,

where

-- (cosht- I )-sinh x.( )+- (cosh - I f () (A.20a)
Dt 2 -0 2- 1
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=-(cosht - 1 )-2 sinl [ o(t) + 1(t l + ( cosht - I Q-t () + Oj(t) I (A.20b)

= 1 ()I -[cos))) (A.20c)

ayc

M cosh2a (A.20d)
4

) (F-- A 0 ( sinhi - t cosh4 ) + B o t sinh4 (A.20e)

= A,. [ (n +I1) sinh (n + 1 )4- (n -I1 )sinh( n - 1 A ] (A.20f)

+B, (n 2_-)[cosh(n+l)4-cosh(n-l ] (n>t2)

Oak) = ao ( sinh4 + t cosht ) + bo t sinht (A.20g)

*j(4)=a 1 2sinh2t+b 12(cosh2t-1) (A.20h)

The other functions Xo(t), XI(t), y. (t), 0(t , 01(t) and the coefficients in these functions are

given in equations (A.6) through (A.7). The maximum disturbance velocity ud ,,. is computed

and plotted in Figure 2.



-47 -

APPENDIX (B):

COMPUTATION OF TORQUE AND DRAG:

In this section the computational approach for determining torque and drag is given. The

velocities, computed with NEKTON in Gaussian collocation points, are converted to cylindrical

coordinates and then the closest three interpolation point velocities around the cylinder in radial

directions are used in second order polynomials to find their variations in radial directions on the

cylinder. The shear stress distribution on the cylinder is obtained by calculating the derivatives

of the velocities. The torque and drag are calculated by integrating the shear stress and pressure

on the cylinder.

For a Newtonian fluid, the viscous stress vector at the surface of a body must lie on the sur-

face. Therefore, at the surface all the normal viscous stresses vanish. The only nonzero stress,

,e, on the cylinder is

TrG r=d2.L [ 1 d/2 (B. 1)

[arJ

The torque and drag acting on the cylinder are

2x d 2|T= [ P,0l,=V,2l --I dO ,(B.2)

0 2

[2xP 
d.F [ (Ere 1,=d/2 ) COS0 + P sin0 ] - dO 0 (B .3)

0o
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Figure (8). Velocities at the collocation points

The velocities in cylindrical coordinates in terms of Cartesian coordinates are

u, (i j) =- u (1j)sin O, + v(ij)cos 8, (B.5)

Taking a second order polynomial for the radial velocity us, as

u6, =C r
2+C2 r+C 3 ,(B.6)
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and using the values of uo(i,), ue(i,l), ue(i,2 ) to find the coefficients, C, C 2 , C 3 , and

after some manipulation, we get - 1,=d/ as
ar

auIa =dt2 dr12uo(i,2)-(dr, +dr2)2uo(il) (B.7)

where

Dl=-dr1 dr2 (drl+dr2 ) (B.8)

The slw,ar stress on the cylinder ui dimen-ionai form ir

T r=,d/2 (B.9)

The shear stress equation (B.9) is evaluated by using equation (B.7) and (B.8).

The torque and drag equations in discrete form are

E9- d it -Pi (B. 1 .10)

F=2 cos2[ + sn[ -- [0i+1-0i (B. 11),--o 22 2
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Figure (9). The cone-and-plate apparatus
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Figure (10). The shear stress gauge and experimental set-up
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Figure (11). Shear flow over a cylinder near a wall, from Taneda(1979)
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Figure (20). Directivity curve
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Figure (24). Viscosities of glycerol-water mixtures at T = 240 C
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Figure (26). Spectral element mesh for -A-= 2.355
d + h

Figure (27). Spectral element mesh for - -a-- =4.5
d + h
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Fig ,ire (28). Shear stress distribution on the cylinder for H 1.355
d - h
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Figure (29). Pressure distribution on the cylinder for H 2.355
d + h
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Figure (31). Shear stress distribution on the cylinder for H= 4.754
d + h
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Figure (32). Pressure distribution on the cylinder for H 4.754
7 +h
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Figure (34). Shear stress distribution on the cylinder for d = 7.167
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Figure (35). Pressure distribution on the cylinder for - -+ = 7.167d +h
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Figure (37). Shear stress distribution on the cylinder for H 8.94
d + h
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Figure (38). Pressure distribution on the cylinder for H = 8.94
d + h
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Figure (40). Shear stress dist-ibi'tion on the cylinder for d 1 2.77
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H 2.355 3.58 4.754 4.98 7.167 8.94 12.77
d +h

mt 1.941 1.505 1.259 1.238 1.i43 1.095 1.044

Tld 2.651 1.673 1.318 1.293 1.162 1.106 1.048

9.684 6.686 5.758 5.602 5.197 4.985 4.761
,t~w

-2.698 -1.291 -1.041 -0.730 -0.847 -0.778 -0.726

Pmax.
7.886 5.029 4.022 3.880 3.577 3.418 3.246

TABLE (1). Computational Results

H 3.26 4.91 6.58 9.92 13.4 16
d

H 2.355 3.548 4.754 7.167 9.68 11.54
d +h

[deg.] 3 3 6 6 12 12

T 34.30 41.49 50.01 58.48 74.95 83.50
OT exp.

OT- - - - 68.20 69.30
07' corrmced

TABLE (2). Experimental Results


